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1. Introduction

At low energies, string vacua are well approximated by effective field theories. However,

not all effective field theories can be embedded in string theory. The string landscape is,

presumably, a large but finite subset of the infinite landscape of all effective field theories.

So in order that an effective field theory can be UV completed into a globally consistent

string vacuum, it must satisfy some severe constraints. Our goal in this paper is to begin

an exploration of some aspects of these constraints within the High Country region of the

string landscape — the region parametrizing those vacua that have the Standard Model

spectrum and perhaps some further quasi-realistic properties. We restrict ourselves to a

special class of string compactifications, namely compactifications of the E8 ×E8 heterotic

string on non-simply connected Calabi-Yau threefolds. When the right constraints are

satisfied, these compactifications provide string vacua with Standard Model features that

can be constructed explicitly in a globally consistent way.

The constraints that need to be imposed are of two kinds: consistency requirements and

phenomenological conditions. We review this in section 2. There are two basic consistency

requirements: a slope-polystability condition which is needed in order to have a solution

of the Hermitian-Yang-Mills equations in the first place; and the Green-Schwarz anomaly

cancellation condition. The precise phenomenological conditions we impose depend on how

closely we want our model to approximate the Standard Model, as well as on the latest news

from LHC. Here we simply require that the Standard Model group as well as a reasonable

GUT group be obtained as the gauge groups on the Calabi-Yau and its universal cover,

respectively; and that the low energy particle spectrum be that of the Standard Model

(with no anti-generations or exotic particles, up to moduli fields).

The High Country region is non empty. The only currently known vacuum with the

above properties is the one constructed in [8]. This vacuum is briefly reviewed in section 3.1.

It is a strongly coupled compactification of the E8 × E8 heterotic string on a non-simply

connected Calabi-Yau threefold with fundamental group Z2. The compactification involves

a visible stable SU(5) bundle, which breaks the visible E8 gauge group to an SU(5) Grand

Unified Theory (GUT). A Z2 Wilson line is then used to break the SU(5) to the MSSM

gauge group SU(3) × SU(2) × U(1). By computing various cohomology groups, it was

shown that the massless spectrum of the low-energy effective theory consists in precisely
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the massless spectrum of the MSSM with no exotic particles, and with a choice of either 0,

1 or 2 Higgs multiplets, depending on where one stands in the moduli space. Indeed, the

model also includes 51 moduli [7], which (one may hope) could be stabilized to realistic

values by considering non-perturbative effects in the compactification. Beyond the explicit

requirements above, this model also exhibits reasonable behavior of its trilinear couplings,

which were computed at tree level in [7]. It was shown that they are realistic enough not

to rule out the model; some of them may even give mass to some of the neutrinos.

The size of the High Country region of the string landscape is not known. Given the

immense size of the string landscape, one might expect that the High Country region too

should be quite large. If not, one would like to understand why the constraints should turn

out to be so unexpectedly strong. It is interesting that over two years after publication

of [8], that vacuum remains the only one known in this class of string compactifications.

Various other models that satisfy some of these properties have however been constructed.

One interesting class consists of heterotic orbifolds, as in [15]. Another model, considered

in [11, 12], will be discussed below.

We would like to emphasize that the two consistency requirements and the basic phe-

nomenological conditions are very finely balanced. Whether the High Country region turns

out to be very large or very small, under any reasonable set of definitions it should turn out

to be a finite set. One point we make in this paper is that any relaxation of the consistency

requirements is liable to produce an infinite set of solutions. We are not saying that there

should be an infinite landscape — quite to the contrary, we are saying that any relaxation

of the requirements that leads to such an infinite landscape must be physically suspicious.

Let us, for example, frivolously remove the anomaly cancellation condition. In section 4 we

construct an infinite family of such vacua satisfying all the remaining conditions; in partic-

ular they have precisely the massless spectrum of the MSSM and quasi-realistic tri-linear

couplings. This infinite family is in fact obtained as a minor modification of the model of [8].

It is worth pointing out that within the heterotic theory this relaxation is precisely

equivalent, as we recall in section 2.2.1, to admission of solutions involving a combination

of M5- and anti-M5-branes, with supersymmetry broken at the compactification scale.

Indeed, introducing M5- and anti-M5-branes in the spectrum modifies the Green-Schwarz

anomaly cancellation condition in such a way that for any desired visible bundle, the

anomaly can be cancelled by introducing suitable M5- and anti-M5-branes. So our infinite

family may alternatively be viewed as a family of non-supersymmetric vacua. From this

point of view, finiteness can of course be restored if one takes into account that there is

probably a maximal scale of supersymmetry breaking above which models become unstable.

At the highest this would be the Planck scale, but possibly lower. The difficulty would then

be converted into formulating explicit new constraints that guarantee an acceptable scale.1

A similar example occurs in [12]. This evolved in an attempt to restore consistency

of the compactification of [11]. As was shown in [26], the compactification of [11] violates

either polystability or anomaly cancellation, depending on the hidden sector bundle used;

1We thank Mike Douglas for correspondence on this issue. Similar comments on infinite families of

non-supersymmetric vacua were made in [1].
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either way, it is not globally consistent. The proposal in [12] was to restore anomaly can-

cellation by adding to the compactification certain anti-M5-branes. The resulting vacuum

is non-supersymmetric. The claim in [12] is that after moduli stabilization, some com-

pactifications of the E8 ×E8 heterotic string on Calabi-Yau threefolds with both M5- and

anti-M5-branes may be metastable, with long enough lifetime for them to be phenomeno-

logically interesting [12, 13, 27]. It is certainly possible that this may apply to the bundle

in [12], and it is just as possible that it applies to any one of the infinite collection of bundles

in our section 4. It clearly should not apply to all, and with the present state of knowledge,

we do not seem to have tools for deciding when it does and when it does not apply.

Another point of view on these vacua stems from the “bottom-up” approach to string

model building, whereby the idea is to focus on local properties of brane constructions,

ignoring the global embedding in a fully consistent string theory. Dropping the topological

anomaly cancellation may be understood as a bottom-up approach locally valid near the

visible orbifold plane in heterotic M-theory. Note that this kind of bottom-up approach

has been considered recently in detail from the F-theory dual point of view [4]. It would be

interesting to understand the analog of these infinite families on the F-theory side, perhaps

using the dual description developed in [17, 24], and to study more precisely how many of

those F-theory local models can actually be completed to globally consistent string theories.

We are therefore left with the (so far unique) globally consistent Standard Model com-

pactification of [8]. In section 3 we construct some variants of this model. The compacti-

fication of [8] was in the strong coupling regime of heterotic M-theory, since the presence

of M5-branes was used to cancel the Green-Schwarz anomaly and produce a globally con-

sistent compactification. Such non-perturbative compactifications have advantages as well

as disadvantages for model building. Some of the advantages of perturbative heterotic

compactifications, which do not have M5-branes, are discussed for instance in [2]. So it

is of interest to have a perturbative variant of our model. Indeed, it turns out that the

M5-branes in our model can be replaced by a polystable bundle in the hidden sector. In

this section we propose SU(4) as well as SU(5) hidden bundles which cancel the anomaly

without introducing M5-branes. Hence, we obtain an alternative completion of the model

of [8] to a fully pertubative and globally consistent heterotic compactification. We briefly

comment on the possibility of using the resulting hidden theories to implement dynamical

supersymmetry breaking, either through an analog of the Intriligator-Seiberg-Shih mecha-

nism [28] along the lines of [10], or through gaugino condensation.

To summarize the results discussed so far, we obtain three different string constructions

with precisely the MSSM spectrum in the visible sector (up to moduli fields) and quasi-

realistic tri-linear couplings, based on the model of [8]:

• A supersymmetric vacuum with M5-branes, in the strongly coupled regime of het-

erotic string theory, as presented in [8];

• A supersymmetric vacuum without M5-branes, in the perturbative regime of het-

erotic string theory, with an SU(4) or SU(5) hidden theory which may perhaps be

used to break supersymmetry dynamically (section 3);
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• An infinite family of (perhaps metastable) non-supersymmetric vacua with both M5-

and anti-M5-branes (or bottom-up models near the visible orbifold plane), in the

strongly coupled regime of heterotic string theory (section 4).

Finally, in section 5, we try to construct new quasi-realistic supersymmetric compacti-

fications of string theory. In [9], a class of non-simply connected Calabi-Yau threefolds was

constructed, by classifying all possible finite groups acting freely on smooth Calabi-Yau

threefolds constructed as fiber products of two rational elliptic surfaces. The non-simply

connected threefolds are then obtained by taking the quotients. This class of threefolds

provides a playground to study how frequent quasi-realistic compactifications of heterotic

string theory on non-simply connected Calabi-Yau threefolds are.

In particular, four distinct Calabi-Yau threefolds with fundamental group Z6 were

constructed. Here, we study existence of Standard Model bundles on these threefolds. A

Z6 Wilson line can be used to break either the SU(5) GUT group to the MSSM gauge

group SU(3) × SU(2) × U(1), or the Spin(10) GUT group to the MSSM gauge group with

an extra U(1)B−L. We propose various bundle constructions, but are unable to satisfy

all the topological conditions required by global consistency and phenomenology, in the

supersymmetric regime. The key point is that the two consistency conditions, namely the

stability condition resulting from the Donaldson-Uhlenbeck-Yau theorem, and the anomaly

cancellation condition with (or without) M5-branes in the spectrum, are very difficult to

satisfy simultaneously. This is reminiscent of the analysis proposed in section 4, where

only one model out of the infinite family actually satisfied both conditions. Here as well

we obtain infinite families of models with stable bundles that could be used to construct

non-supersymmetric vacua with M5- and anti-M5-branes, or bottom-up models, but none

of those satisfy the anomaly cancellation condition without introducing anti-M5-branes.

We should mention that we have not exhausted all possible bundle constructions on

these Z6 threefolds, and it is possible that other types of constructions may lead to Standard

Model bundles. It would also be interesting to study other threefolds in the classification

of [9] along similar lines, since there is no reason a priori to focus on the Z6 or the Z2

threefolds. We hope to report on that in future work.
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2. Compactifications of the E8 × E8 heterotic string

2.1 Generalities

We consider four-dimensional compactifications of E8 × E8 heterotic string theory on

Calabi-Yau threefolds. Such an heterotic vacuum is specified by a Calabi-Yau threefold X

and an holomorphic vector bundle Vt → X, where Vt splits into the direct sum Vt = V ⊕Vh;

V is the visible bundle with structure group G ⊆ E8, and Vh is the hidden bundle with struc-

ture group Gh ⊆ E8. The gauge group of the resulting low-energy effective theory in the

visible (resp. hidden) sector is given by the commutant H of G in E8 (resp. Hh of Gh in E8).

In the following we will choose the visible bundle V to have structure group G = SU(4)

or SU(5), such that its commutant is, respectively, H = Spin(10) or SU(5). Then, in

order to obtain the MSSM gauge group, we choose X to be non-simply connected, with

fundamental group π1(X) = GX , where GX is a finite abelian group. This allows us to use

a discrete GX Wilson line to break the GUT gauge group H = SU(5) to the MSSM gauge

group SU(3)×SU(2)×U(1), or Spin(10) to the MSSM gauge group with an extra U(1)B−L.

2.2 Consistency and phenomenological requirements

There are two kinds of constraints that the vector bundle Vt = V ⊕Vh must satisfy. The first

kind consists in consistency constraints required by the heterotic string compactification;

if the bundle fails to satisfy these constraints, it cannot be used to produce a globally

consistent string vacuum. The second kind of constraints is phenomenological; they are

necessary in order to obtain realistic four-dimensional physics.

2.2.1 Consistency requirements

Global consistency of the heterotic compactification imposes two particular constraints:

• (S): At tree level, Vt must be polystable with respect to a certain Kähler class ω on

X, and have zero slope µω(Vt) = 0;

• (A): Vt must satisfy the Green-Schwarz anomaly cancellation condition.

The first constraint comes from the Donalson-Uhlenbeck-Yau theorem, which states

that a vector bundle admits an Hermitian Yang-Mills connection if and only if it is

polystable with respect to the Kähler class. Let us now recall the definition of polystability,

for completeness. Let ω be a Kähler class on X, and define the slope µω(Vt) of a vector

bundle Vt on X, with respect to ω, by

µω(Vt) =
c1(Vt) · ω

2

rank(Vt)
. (2.1)

A vector bundle Vt is stable with respect to ω if and only if

µω(V ′) < µω(Vt) (2.2)

for all subbundles V ′ ⊂ Vt. It is semistable if the inequality is weakened to

µω(V ′) ≤ µω(Vt). (2.3)
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Vt is polystable if it is a direct sum of stable bundles Vt = V1 ⊕ . . . ⊕ Vk with equal slopes:

µω(Vt) = µω(V1) = . . . = µω(Vk). (2.4)

Polystability, which is stronger than semistability but weaker than stability, is the condition

required by the Donaldson-Uhlenbeck-Yau theorem, and relevant for global consistency of

heterotic compactifications at tree level. In fact, at tree level consistency requires that

the bundle Vt satisfies the zero-slope limit of the Hermitian-Yang-Mills equation, which

imposes that the slope of Vt vanishes (see for instance [33]). Note that we will impose

further that c1(Vt) = c1(V ) = c1(Vh) = 0, which implies that µω(Vt) = 0.

The second constraint comes from the Bianchi identity for the three-form field strength

H in heterotic string theory, which implies the topological constraint

c2(TX) − c2(Vt) = c2(TX) − c2(V ) − c2(Vh) = 0 (2.5)

on the second Chern classes of the bundles V , Vh and the threefold X. Note however that

the Bianchi identity is in fact stronger than this topological condition, since it should be

satisfied at the form level.2 However in the following we will be satisfied with requiring

only the topological condition.

The anomaly cancellation condition (2.5) must be satisfied for perturbative heterotic

compactifications. In the strongly coupled regime of heterotic M-theory, it is possible to

allow for the presence of M5-branes in the spectrum, which must wrap holomorphic curves

in X. The anomaly cancellation condition then reads

c2(TX) − c2(V ) − c2(Vh) = [W ], (2.6)

where [W ] is the four-form Poincaré dual to the homology class of a (sum of) holomorphic

curve(s) in X around which the M5-branes are wrapped. Holomorphicity, which is required

to preserve supersymmetry, translates into effectiveness of [W ]. In terms of model building,

this weakened condition means that we should look for bundles V and Vh such that the left-

hand-side of (2.6) is effective, and cancel the anomaly by introducing M5-branes wrapping

a (or some) curve(s) in this class.

Note that in [12] it was suggested that it is even possible to allow for the simulta-

neous presence of both M5-branes and anti-M5-branes in the spectrum, both wrapping

holomorphic curves in X. Such configurations break supersymmetry explicitly at the com-

pactification scale, and may potentially be physically unstable, although it was argued

in [12] that they can be metastable with long enough lifetime. For these vacua the anomaly

cancellation condition would become

c2(TX) − c2(V ) − c2(Vh) = [W ] − [W̄ ], (2.7)

where [W̄ ] is now Poincaré dual to the homology class of a holomorphic curve in X around

which the anti-M5-branes are wrapped. Hence, both [W ] and [W̄ ] are effective, which

means that the right hand side of (2.7) is neither effective nor anti-effective. In terms of

2See for instance [2] for a recent discussion of this point.
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model building, this proposal has a dramatic consequence; namely, we can now look for

any bundles V and Vh with no restriction whatsoever on their second Chern classes, and

cancel the anomaly by choosing [W ] and [W̄ ] appropriately.

To summarize, the first string revolution gave us the exact condition (2.5) on c2(Vt)

for a perturbative compactification; the second string revolution enabled us to weaken this

to an inequality (2.6) (the effectivity condition) on c2(Vt) for compactifications with M5-

branes; while the work of [12] would give us blanket permission to waive the condition

altogether for compactifications with both M5- and anti-M5-branes.

2.2.2 Phenomenological constraints

On top of these consistency conditions, there are more topological conditions that we

require to obtain phenomenologically interesting physics. In the visible sector, we require

that:

• (C1): c1(V ) = 0, since we want structure group SU(n) rather than U(n);3

• (C3): c3(V ) = ±6, to get three generations of particles.

Moreover, in the hidden sector, we require:

• (C1h): c1(Vh) = 0, since we want structure group SU(n) rather than U(n);

• (C3h): c3(Vh) = 0, to have no chiral matter in the hidden sector.

Obviously, much more than these topological constraints must be satisfied in order

to get realistic low-energy physics. For instance, in the visible sector, no exotic particle

should appear in the massless spectrum, the Yukawa couplings should be realistic, the

proton must not decay, etc. Some of these extra constraints can be studied as in [7, 8, 21],

by computing cohomology groups of the bundle V and triple products of cohomology

groups. In the hidden sector, requiring that c3(Vh) = 0 does not mean that there is no

generation/anti-generations pairs, but rather that the number of generations is equal to the

number of anti-generations. To have no generation of particles at all in the hidden sector,

we would need to strenghten the constraint by requiring that some cohomology groups of

Vh vanish, rather than just requiring that c3(Vh) = 0.

Hence, the topological conditions above on the bundles are far from being sufficient

for producing realistic low-energy physics, but are a first step — which is already rather

difficult to achieve — towards this goal. Let us now describe the class of non-simply

connected Calabi-Yau threefolds that we will be working with.

3To be precise, this also comes from a global consistency requirement, namely that the second Stiefel-

Whitney class of the bundle vanishes (see for instance [33] for a recent discussion), which implies that

c1(V ) = 0 mod 2. We require that c1(V ) = 0 since we want SU(n) bundles; but recently the interesting

possibility of constructing U(n) bundles with c1(V ) 6= 0 has also been investigated, see for instance [3].

Phenomenologically interesting U(n) bundles have also been studied in [5, 6, 33]. Note that by requiring

that c1(V ) = c1(Vh) = 0, we automatically satisfy the zero slope consistency condition on Vt.
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2.3 The non-simply connected Calabi-Yau threefolds

We construct our non-simply connected Calabi-Yau threefolds by taking quotients of Schoen’s

Calabi-Yau threefolds X̃ = B×P1 B′, which are smooth fiber products of two rational ellip-

tic surfaces β : B → P1 and β′ : B′ → P1 [31]. X̃ can be represented by the commutative

diagram

X̃
π′

��~~
~~

~~
~~ π

  
AA

AA
AA

AA

B
β

  
@@

@@
@@

@@
B′

β′

~~}}
}}

}}
}}

P1

(2.8)

In [9] we classified all possible smooth fiber products X̃ admitting freely acting finite

abelian groups of automorphisms GX̃ . By taking the quotients X = X̃/GX̃ , we obtained a

large family of smooth non-simply connected Calabi-Yau threefolds X, with fundamental

groups π1(X) = GX̃ . These are the Calabi-Yau threefolds on which we will be compacti-

fying heterotic string theory.

To be more precise, table 11 of [9] presents the list of non-simply connected Calabi-

Yau threefolds that can be constructed in this way. Each of these has one of the following

fundamental groups:

Z3 × Z3, Z4 × Z2, Z6, Z5, Z4, Z2 × Z2, Z3, Z2. (2.9)

In this paper we will focus on two particular classes of threefolds. First, we consider the

non-simply connected Calabi-Yau threefold with fundamental group Z2 corresponding to

the next-to-last line in table 11 of [9]. This is the Calabi-Yau threefold that was used in

the heterotic standard model of [7, 8], and was first constructed in [22, 23]. Its non-trivial

Hodge numbers are h1,1(X) = h2,1(X) = 11. More precisely, in [7, 8, 22, 23] the covering

Calabi-Yau threefold X̃, which admits a free Z2 involution, was constructed explicitly as a

smooth fiber product of two rational elliptic surfaces with configurations of singular fibers

{2I2, 8I1}; this is the generic configuration in the four-parameter family given by case #35

in table 9 of [9].

The second class we will be interested in consists in the non-simply connected Calabi-

Yau threefolds with fundamental group Z6. According to table 11 of [9], there are four

such threefolds, each of which has Hodge numbers h1,1(X) = h2,1(X) = 3. In section 5

we make an attempt to construct Standard Model bundles on there manifolds. The reason

why we chose this particular class of threefolds is that Z6 turns out to be sufficiently big

to break both SU(5) and Spin(10) to the MSSM gauge group (up to an extra U(1)B−L in

the Spin(10) case); hence we can try to construct both SU(4) and SU(5) visible bundles on

these threefolds.

3. Hidden bundles

In this section we refine the heterotic compactification proposed in [8], by constructing

hidden bundles cancelling the anomaly, hence producing a fully perturbative compactifi-
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cation of heterotic string theory. It is conceivable that the resulting hidden theories may

be used to implement dynamical supersymmetry breaking in the hidden sector. We briefly

comment on this possibility, although we do not follow this line of research through in the

present paper. But let us first review the construction of [8].

3.1 The heterotic standard model of [8]

In this model we compactify the E8 ×E8 heterotic string theory on a Calabi-Yau threefold

X with Z2 fundamental group. We construct a stable SU(5) bundle on X which is twisted

by a Z2 Wilson line to break the visible E8 gauge group to the MSSM gauge group SU(3)×

SU(2) × U(1).

As mentioned earlier, the non-simply connected threefold X is constructed by taking

the quotient of a fiber product X̃ = B×P1 B′ which admits a free Z2 involution τ : X̃ → X̃ ;

that is, X = X̃/〈τ〉. We refer the reader to [8, 9, 22] for the details of the geometry.

In the construction of [8], we assumed the hidden bundle Vh to be trivial — this is

the assumption we will want to relax later on. To get an SU(5) visible bundle V on X,

we construct a Z2-invariant bundle Ṽ on the cover threefold X̃. The dual bundle Ṽ ∗ is

constructed as an extension

0 → V2 → Ṽ ∗ → V3 → 0, (3.1)

where V2 and V3 are rank 2 and 3 bundles respectively given by

Vi = π′∗Wi ⊗ π∗Li, (3.2)

where the Li are some line bundles on B′ and the Wi are rank i bundles on B given by the

Fourier-Mukai transforms Wi = FMB(Ci, Ni); as usual, the Ci ⊂ B are curves in B and

the Ni ∈ Pic(Ci) are line bundles over Ci.

Using the notation of section 2.3, the explicit data goes as follows:

C̄2 ∈ |OB(2[e0] + 2[f ])|,

C3 ∈ |OB(3[e0] + 3[f ])|,

C2 = C̄2 + f∞,

N2 ∈ Pic3,1(C2),

N3 ∈ Pic7(C3),

L2 = OB′(3[r′]),

L3 = OB′(−2[r′]). (3.3)

f∞ is the smooth fiber of β at ∞, and Pic3,1(C2) denotes line bundles of degree 3 over C̄2

and degree 1 on f∞. [e0] is the class of the zero section of β, while [f ] is the fiber class.

Finally, the class [r′] is given by

[r′] = [e′1] + [e′4] − [e′5] + [e′0] + [f ′], (3.4)

where the e′i’s are sections of β′. Again, we refer the reader to [8, 22] for more details on

this construction.
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It was shown in [8] that Ṽ is stable and invariant under the Z2 involution. Its coho-

mology was computed in [8], and it leads to exactly the MSSM massless particle spectrum,

with no exotic particles, up to moduli fields. The number of Higgs multiplet is either 0, 1

or 2, depending on where we stand in the moduli space. It was also computed in [7] that

the spectrum contains 51 vector bundle moduli, on top of the 11 complex structure moduli

and the 11 Kähler moduli of the Calabi-Yau threefold X. Finally, the tri-linear couplings

were computed at tree level in [7], and shown to be realistic enough not to rule out the

model phenomenologically.

It was also shown that the bundle satisfies the topological version of the anomaly

cancellation condition. More precisely, we obtained that (recalling that the hidden bundle

is assumed to be trivial)

c2(TX̃) − c2(Ṽ ) = 2[f × pt] + 6[pt × f ′] := [W ]. (3.5)

Hence, to make the vacuum globally consistent we must include M5-branes in the spec-

trum, wrapping a curve in the Poincaré dual of the effective class [W ]. That is, our

compactification is in the strongly coupled regime of heterotic M-theory.

The purpose of this section is to construct a Z2-invariant hidden bundle Ṽh on X̃ with

second Chern class

c2(Ṽh) = 2[f × pt] + 6[pt × f ′], (3.6)

such that the anomaly cancellation condition is satisfied without the need for M5-branes,

hence providing a fully perturbative compactification of the heterotic string.

3.2 The construction of hidden bundles

We now propose SU(4) and SU(5) hidden bundles which are Z2-invariant, polystable, with

second Chern class (3.6), and satisfying the topological conditions (C1h) and (C3h) pre-

sented earlier.

3.2.1 An SU(5) hidden bundle

We first construct a hidden bundle Ṽh as the direct sum of two Z2-invariant stable bundles

Ṽh = Ṽ1 ⊕ Ṽ2 (3.7)

with c1(Ṽ1) = c1(Ṽ2) = 0 — hence Ṽ1 and Ṽ2 have zero slope. Then, c1(Ṽh) = 0, and Ṽh is

polystable and Z2-invariant.

We construct Ṽ1 by pulling back a rank 2 bundle on B′, and Ṽ2 by pulling back a rank

3 bundle on the other rational elliptic surface B. That is,

Ṽ2 = π′∗W2, Ṽ1 = π∗W ′
1, (3.8)

where W2 lives on B, and W ′
1

lives on B′. W ′
1

and W2 are both constructed using a Fourier-

Mukai transform. W ′
1

is constructed from a pair (C ′
1
, N ′

1
), where C ′

1
is a curve in B′ and

N ′
1
∈ Pic(C ′

1
). We choose the data

C ′
1 ∈ |OB′(2[e′0] + 2[f ′])|, N ′

1 ∈ Pic3(C ′
1), (3.9)
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where e′
0
, f ′ are respectively the zero section and the fiber of B′. Similarly, we construct

W2 on B from the data

C2 ∈ |OB(3[e0] + 6[f ])|, N2 ∈ Pic15(C2). (3.10)

According to [23], both C ′
1

and C2 can be chosen to be smooth and Z2-invariant, and

the line bundles can also be chosen to be invariant under the Fourier-Mukai transformed

involution. Hence the bundles W ′
1

and W2 are stable and Z2-invariant.

Now it is easy to compute the Chern classes of Ṽh from this data. Using the results

of [23], we obtain

c1(Ṽ1) = c1(Ṽ2) = c1(Ṽh) = 0, c3(Ṽh) = 0, c2(Ṽh) = 2[f × pt] + 6[pt × f ′]. (3.11)

So this bundle satisfies the conditions above on the Chern classes. Hence, we constructed

an SU(5) hidden bundle that cancels the anomaly, is polystable, is Z2-invariant and satisfies

the topological conditions on the Chern classes.

3.2.2 An SU(4) hidden bundle

The second construction is very similar to the first. We now construct Ṽh as a direct sum

of two rank 2 stable bundles

Ṽh = Ṽ1 ⊕ Ṽ2 (3.12)

with c1(Ṽ1) = c1(Ṽ2) = 0. The bundles are constructed as

Ṽ2 = π′∗W2, Ṽ1 = π∗W ′
1, (3.13)

where W2 and W ′
1

are constructed via Fourier-Mukai transforms with data

C ′
1 ∈ |OB′(2[e′0] + 2[f ′])|, N ′

1 ∈ Pic3(C ′
1), (3.14)

and

C2 ∈ |OB(2[e0] + 6[f ])|, N2 ∈ Pic11(C2). (3.15)

Again, according to [23], both C ′
1

and C2 can be chosen to be smooth and Z2-invariant,

and the line bundles can be chosen to be invariant under the Fourier-Mukai transformed

involution. Hence the bundles W ′
1

and W2 are stable and Z2-invariant.

Computing the Chern classes, we get again (3.11). Thus, we constructed an SU(4)

hidden bundle that cancels the anomaly, is polystable, is Z2-invariant and satisfies the

topological conditions on the Chern classes.

3.3 Dynamical supersymmetry breaking in the hidden sector

In the previous section, we introduced non-trivial SU(4) and SU(5) hidden bundles in the

compactification, which produce respectively hidden Spin(10) and SU(5) gauge theories.

From a phenomenological point of view, it would be interesting if the hidden theory could

be used to implement dynamical supersymmetry breaking.

One approach that was explored in [10] is to construct hidden theories with non-

supersymmetric metastable vacua, providing a supersymmetry breaking mechanism that
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could, in principle, be mediated to the visible sector via standard mechanisms. Non-

supersymmetric metastable vacua in gauge theories have been studied by Intriligator,

Seiberg and Shih in [28]. Roughly speaking, they considered N = 1 supersymmetric

SU(Nc) theory with Nf massive flavors in the fundamental representation. Then, they

showed that if

Nc + 1 ≤ Nf <
3

2
Nc, (3.16)

there exists supersymmetry breaking vacua. Moreover, if

|ǫ| =

√

∣

∣

∣

m

Λ

∣

∣

∣
≪ 1, (3.17)

where m is the typical scale of the quark masses and Λ is the strong coupling scale, these

vacua are long-lived.

They also considered N = 1 supersymmetric Spin(Nc) theories with Nf massive flavors

in the fundamental representation. In this case, supersymmetry breaking metastable vacua

exist if

Nc − 4 ≤ Nf ≤
3

2
(Nc − 2), (3.18)

and they are long-lived if the inequality (3.17) is satisfied.

One could hope that the SU(5) and Spin(10) hidden theories that we introduced

in the previous subsection are of this type. We constructed SU(4) and SU(5) hidden

bundles Vh satisfying the condition c1(Vh) = c3(Vh) = 0, which means that the number

of generations is equal to the number of anti-generations in the hidden sector. But it

does not mean that these numbers are zero individually; for this, we need to show that

h1(X,Vh)=h1(X,V ∗
h )=0.

In fact, it is easy to compute that for both hidden bundles that we constructed above,

h1(X,Vh) = h1(X,V ∗
h ) 6= 0. Hence our hidden theories have massless matter in the 16

and 16 of Spin(10), and the 10 and 10 of SU(5), respectively, and are not of the type

studied by Intriligator, Seiberg and Shih in [28], which only have matter in the fundamental

representation. However, the hidden theories that we constructed may still have non-

supersymmetric metastable vacua; it would be interesting to study this question further. It

would also be interesting to try to construct other hidden bundles which cancel the anomaly

of our visible bundle, and produce hidden theories precisely of the type studied in [28].

Another, more traditional, approach to supersymmetry breaking is to consider confin-

ing hidden theories, such that gaugino condensation produces an effective superpotential.

Minimization of the potential may lead to vacua with supersymmetry dynamically broken

(see for instance [18] for such scenario in type II theories with intersecting D6-branes).

It is possible that the hidden theories we constructed are confining; one needs to check

whether the beta function is negative, which necessitates the computation of the number

of particles in the fundamental representation. If this is the case, gaugino condensation

should produce an effective superpotential; minimization of the potential could then lead to

vacua with supersymmetry dynamically broken. It would also be interesting to construct

hidden theories with at least two confining gauge group factors, which may implement the

so-called racetrack mechanism for supersymmetry breaking.

We postpone these investigations of supersymmetry breaking for future work.
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4. An infinite family of frivolous models

4.1 Motivation

In this section we address the proposal of [12] to consider non-supersymmetric vacua of

the strongly coupled heterotic string, with both M5-branes and anti-M5-branes in the

spectrum. Let us be a little more precise.

The E8 ×E8 heterotic string theory compactified on a Calabi-Yau threefold X can be

understood as 11-dimensional heterotic M-theory compactified on the manifold X×S1/Z2.

At each end of the interval S1/Z2, there is an orbifold plane, on which an E8 gauge theory

lives; one end is chosen to be the visible sector, and the other end is the hidden sector. The

E8 visible and hidden gauge theories may be broken by introducing non-trivial stable vector

bundles V and Vh on the orbifold planes. Moreover, one can introduce M5- and anti-M5-

branes in the bulk space between the orbifold planes, wrapping holomorphic curves in the

Calabi-Yau threefold X. Supersymmetry is then broken explicitly at the compactification

scale.4

Supersymmetry is usually required to ensure physical stability of the vacuum. How-

ever, it was argued in [12, 13], and then in [27], following the pioneer work of KKLT in type

II theory [29], that after moduli stabilization, some heterotic vacua with both M5- and

anti-M5-branes may be metastable, with long enough lifetime to be phenomenologically

interesting, and with a small positive cosmological constant. Due to the present state of

knowledge on moduli stabilization in heterotic string theory, it remains unclear to us which

precise conditions should be satisfied for heterotic compactifications with M5-branes and

anti-M5-branes to have metastable vacua with long enough lifetime after moduli stabiliza-

tion. While it would be very interesting to understand these issues better, in this paper we

will not address any of these claims explicitly, and content ourselves with a more pragmatic

approach consisting in studying the effect of allowing such vacua on the mathematics of

heterotic model building.

From the point of view of model building, the main consequence of the introduction of

M5- and anti-M5-branes in the spectrum is to modify the anomaly cancellation condition,

as explained in section 2.2. It considerably simplifies the mathematics, since for any bundles

V and Vh the anomaly can be cancelled by introducing suitable M5- and anti-M5-branes.

Indeed, one of the motivations behind the proposal of [12] was to make the compactification

of [11] globally consistent, since without the introduction of anti-M5-branes in the spectrum

it is anomalous (i.e. it does not satisfy the condition (2.6)).

4.2 The infinite family

We now consider the heterotic Standard Model of [8], which was reviewed in section 3.1.

As in [8] we assume the hidden bundle to be trivial. What we now show is that if we

drop the anomaly cancellation condition and allow c2(TX) − c2(V ) to be non-effective as

in (2.7), we get an infinite family of heterotic string vacua with exactly the MSSM massless

4Note that if no anti-M5-branes are present, supersymmetry remains unbroken.
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spectrum with no exotic particles up to moduli fields, precisely as in [8], and quasi-realistic

tri-linear couplings at the classical level as in [7].

We take the same threefold as in section 3.1, and construct the visible bundle Ṽ by

the extension (3.1), with V2 and V3 as in (3.2). Moreover, we use the same data as in (3.3),

except for the definition of the line bundles N2 and N3. We generalize the construction of

the model by defining the line bundles to be

N2 ∈ Picd2−1,1(C2), N3 ∈ Picd3(C3) (4.1)

for any integers d2, d3 ∈ Z. The construction of [8] then consists in the particular case

(d2, d3) = (4, 7). It is clear from the data (3.3) and the analysis of [23, 8] that such bundles

are Z2-invariant.

Let us now compute the Chern character of this visible bundle Ṽ . Using the results

of [23], we get that

ch(Ṽ ) = 5 + (11 − d2 − d3)[π
∗f ′] −

(

6[pt × f ′] + (−6d2 + 4d3 + 6)[f × pt]
)

+ 6[pt]. (4.2)

with the notation as in section 3.1. We find that c3(Ṽ ) = 12 as required, while c1(Ṽ ) = 0 if

d2 = 4 − d, d3 = 7 + d, (4.3)

for some d ∈ Z.

If we require that the anomaly cancellation condition (2.6) be satisfied, i.e. that c2(X̃)−

c2(Ṽ ) be effective, with c2(X̃) = 12[pt × f ′] + 12[f × pt], we obtain the extra constraint

−6d2 + 4d3 ≤ 6, (4.4)

that is

d ≤ 0. (4.5)

As explained in [23], stability of Ṽ requires that H1(X̃, V2 ⊗ V ∗
3
) 6= 0 — or, in other

words, that there exists non-trivial extensions of the form (3.1) — and that c1(V2) be

non-effective. From [23, 8], we know that the first condition is automatically satisfied since

L2 · f
′ > L3 · f

′. The first Chern class of V2 is given by

c1(V2) = 6[π∗r′] − (d + 1)[π∗f ′]; (4.6)

one can show that the second condition imposes that

d ≥ 0. (4.7)

To summarize, if we do not require anomaly cancellation, the integer d ∈ Z must only

satisfy d ≥ 0, for stability. Anomaly cancellation adds the extra constraint that d ≤ 0,

therefore the only solution to both constraints is d = 0.

What we have just found is that if we do not require the anomaly cancellation con-

straint (4.4), we can choose any integer d ≥ 0 to get a visible bundle satisfying the stability

condition, Z2-invariance, and the phenomenological requirements on the Chern classes.
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Moreover, it is easy to see that all the cohomology calculations to determine the massless

spectrum in [8], and similarly for the triple product calculations to obtain the tri-linear

couplings in [7], do not depend on the degrees of the line bundles d2 and d3, hence on d.

Hence, all the results of [7, 8] carry over to these new constructions.

As a result, we get an infinite family of models, parameterized by d ∈ Z, d ≥ 0, with

exactly the massless spectrum of the MSSM with no exotic particles, and quasi-realistic tri-

linear couplings at tree level. Note that all these models are really different, since varying

the integer d changes the second Chern class of the bundle Ṽ , which reads (see (4.2))

c2(Ṽ ) = 6[pt × f ′] + 10(d + 1)[f × pt]. (4.8)

Of course, all of these models are non-supersymmetric (except for d = 0 where we re-

cover the model of [8]), in the sense that they do not satisfy the anomaly cancellation

condition (4.4) unless one introduces both M5- and anti-M5-branes in the spectrum.

To summarize, in the heterotic context with unbroken supersymmetry, there seems to

be a strong tension between the two consistency conditions of the compactification; namely,

the stability condition on the bundles coming from the Donaldson-Uhlenbeck-Yau theorem,

see (4.7), and the topological version of the anomaly cancellation condition, see (4.4). If

we drop the anomaly cancellation condition, instead of a unique solution we get an infinite

family of solutions, which can be interpreted as non-supersymmetric solutions with M5-

and anti-M5-branes. This also makes sense from the local point of view; without requiring

anomaly cancellation, we get an infinite family of quasi-realistic supersymmetric effective

theories, but only one of them can be UV completed into a globally consistent string theory.

This shows explicitly that given a local compactification, it may be very difficult, if not

impossible, to find a global embedding in a consistent supersymmetric string theory.

In fact, we will see the same tension between these consistency conditions in the next

section, when we try to construct Standard Model bundles on another class of threefolds.

We will also get infinite families of non-supersymmetric vacua, but in this case though, we

will not be able to find any solution to the two constraints; that is, none of these local

models will have a consistent global supersymmetric string completion.

5. A study of Z6 models

In this section, we try to construct new Standard Model bundles on a class of non-simply

connected Calabi-Yau threefolds with Z6 fundamental group.

5.1 The Calabi-Yau threefolds

We start again with Schoen’s Calabi-Yau threefolds X̃ = B×P1 B′, which are fiber products

of two rational elliptic surfaces. We want to construct smooth fiber products X̃ that admit

a free Z6 group of automorphisms 〈τ〉, where τ : X̃ → X̃ is an order 6 automorphism, and

take the quotient to obtain non-simply connected Calabi-Yau threefolds X = X̃/〈τ〉.

We classified fiber products X̃ with finite order group of automorphisms in [9]. We

found four different non-simply connected Calabi-Yau threefolds X with Z6 fundamental
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group (see table 11 of [9]). To understand the differences between the four threefolds, we

need to consider the Z6 automorphism group a little closer.

Any automorphism τ : X̃ → X̃ that preserves the elliptic fibration is a fiber product

τ = τB ×P1 τB′ (5.1)

of two automorphisms τB : B → B and τB′ : B′ → B′ of the rational elliptic surfaces.

For the group 〈τ〉 to be free, the groups 〈τB〉, 〈τB′〉 and 〈τ〉 must all be equal abstractly.

Following the fibration structure (2.8), τ induces an automorphism τP1 : P1 → P1 of the

P1-base, which is given by its projection:

τP1 ◦ β = β ◦ τB, τP1 ◦ β′ = β′ ◦ τB′ . (5.2)

Generically, 〈τP1〉 will only be a sugroup of 〈τ〉, since some of the elements of 〈τ〉 may act

trivially on the P1 (for instance if they consist of only translation by torsion sections on B

and B′).

To construct fiber products X̃ with particular finite order group of automorphisms,

one needs to consider non-generic rational elliptic surfaces B and B′, with specific configu-

rations of singular fibers. Let us now focus on the case where τ is an order 6 automorphism.

According to our classification in [9], it turns out that there are four possible ways of com-

bining non-generic rational elliptic surfaces B and B′ such that the fiber product X̃ admits

a free Z6 action. The four families can be differentiated by the induced automorphism on

P1. Namely, the four families have, respectively,

〈τP1〉 ≃ 1, Z2, Z3, Z6, (5.3)

which are the four possible subgroups of 〈τ〉 ≃ Z6. By taking the quotients X = X̃/〈τ〉,

we thus obtain four non-simply connected Calabi-Yau threefolds X with π1(X) = Z6.

These threefolds were studied in detail in [9]. In particular, it was proved that the

non-trivial Hodge numbers of the four threefolds are h1,1(X) = h2,1(X) = 3. We refer the

reader to [9] for the details of the geometry. In this paper what will be required for the

construction of the bundles is a better understanding of the invariant cohomology of X̃ ,

and its intersection ring, to which we now turn to.

5.2 The invariant cohomology of X̃

In the following we will attempt to construct Standard Model bundles on the non-simply

connected Calabi-Yau threefolds X with π1(X) = Z6. More precisely, we will construct

〈τ〉-invariant bundles on the cover threefolds X̃ , which descend to bundles on the quotient

threefolds. To this end, we need to understand the invariant cohomology of X̃. In fact, as

will become clear as we go along, what we want to compute is the invariant cohomology

subgroup of H2(B, Z) under the cohomological action of 〈τB〉 — and similarly for B′. We

denote the invariant subgroups with a superscript, such as H2(B, Z)〈τB〉.

For the Calabi-Yau threefolds X with π1(X), we showed in [9] that

dim H2(X, Z) = dim H2(X̃, Z)〈τ〉 = 3. (5.4)
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From the fiber product structure of X̃ , we have that

dim H2(X̃, Z)〈τ〉 = dim H2(B, Z)〈τB〉 + dimH2(B′, Z)〈τB′ 〉 − dim H2(P1, Z). (5.5)

Hence, we obtain

dimH2(B, Z)〈τB〉 = dim H2(B′, Z)〈τB′ 〉 = 2. (5.6)

That is, each rational elliptic surface has a two-dimensional invariant cohomology group.

Let us now focus on the rational elliptic surface B and its automorphism group 〈τB〉 —

the same holds for B′. We want to find the two invariant classes generating H2(B, Z)〈τB〉,

and their intersection numbers. First, any automorphism must preserve the canonical class,

which in the case of a rational elliptic surface is just KB = −[f ], where [f ] is the fiber

class of the elliptic fibration. Hence, [f ] is an invariant class under 〈τB〉. By definition, its

self-intersection is [f ] · [f ] = 0.

The construction of the second invariant class is slightly more involved. Take the

generator τB of the automorphism group. In full generality (see [9]), it can be written as

τB = tξ ◦ αB , (5.7)

where αB is the linearization of τB which fixes the zero section σ of the elliptic fibration,

and tξ denotes translation by a section ξ ∈ MW (B) in the Mordell-Weil group of B. It

was shown that the order of αB is equal to the order of the projection τP1. Hence, for our

four families we get that 〈αB〉 ≃ 1, Z2, Z3, Z6 respectively.

Now consider the zero section σ : P1 → B, which defines a class [σ] ∈ H2(B, Z). The

automorphism τB induces an automorphism on cohomology, which we denote by τ∗
B. Apply

τ∗
B six times to the class [σ], and take the sum:

[λ] :=
5

∑

i=0

(τ∗
B)i[σ]. (5.8)

Since (τ∗
B)6 = 1, we get that τ∗

B[λ] = [λ], hence [λ] is an invariant class.

Moreover, from (5.7) we see that τ∗
BB[σ] = [ξ], which is just the class of the section ξ.

Similarly

(τ∗
B)i[σ] = [ei] := [αi−1

B ξ + αi−2

B ξ + . . . + ξ], i = 1, . . . , 5, (5.9)

where we defined the sections ei ∈ MW (B), i = 1, . . . , 5. If we finally denote the zero

section σ by e0, we get that

[λ] =
5

∑

i=0

[ei], (5.10)

which is just the sum of the cohomology classes of six sections. Hence, we obtain directly

the intersection product [λ] · [f ] = 6.

The remaining intersection product [λ] · [λ] is not fixed from general arguments, since

it depends on whether the sections ei intersect or not, which in turn depends on the choice
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of ξ in the definition of the automorphism (5.7). We postpone the calculation of the self-

intersection of [λ] to the appendix, since it is rather technical. Let us simply state here the

result. For all four families, and all allowed choices of ξ, we always obtain

[λ] · [λ] = −6. (5.11)

In other words, we can assume, in full generality, that the six sections ei, i = 0, . . . , 5, are

mutually disjoint.

To summarize, we have constructed two Z6-invariant classes [f ], [λ] ∈ H2(B, Z) for any

of the four Calabi-Yau threefolds, with intersection numbers

[f ] · [f ] = 0, [f ] · [λ] = 6, [λ] · [λ] = −6. (5.12)

However, we have not showed yet whether these two classes generate the full invariant

cohomology group H2(B, Z)〈τB〉, or just a finite index subgroup thereof. We again postpone

the analysis to the appendix, the result being that [f ] and [λ] indeed generate the full

invariant cohomology group H2(B, Z)〈τB〉.

5.3 Z6 symmetry breaking pattern

Before we turn to the construction of bundles, let us explain in more detail why we decided

to concentrate on the threefolds with Z6 fundamental group. The main reason is that Z6

can be used to break both SU(5) to the MSSM gauge group SU(3) × SU(2) × U(1), and

Spin(10) to the MSSM gauge group with an extra U(1)B−L. Hence, we have the extra

freedom of trying to construct both SU(5) and SU(4) bundles on X̃ . Here for completeness

we describe explicitly the two possible symmetry breaking patterns.

To break SU(5) to the MSSM gauge group, we embed the non trivial element −1 of

Z2 into SU(5) diagonally as

diag(1, 1, 1,−1,−1). (5.13)

The commutator contains SU(3) × SU(2) embedded in the upper left and bottom right

corners, respectively, plus a U(1) parametrizing diagonal matrices of the form

diag(λ2, λ2, λ2, λ−3, λ−3), λ ∈ U(1). (5.14)

The actual commutator group is (SU(3)× SU(2)×U(1))/Z6, where the denominator Z6 is

the intersection in SU(5) of SU(3) × SU(2) with U(1).

Let us now turn to Spin(10). The maximal torus of SO(10) can be naturally identified

with (SO(2))5.5 The maximal torus for Spin(10) is a double cover which induces a non-

trivial double cover of each SO(2). An element of order 2, such as:

(1, 1, 1, 1,−1) ∈ (SO(2))5 ⊂ Spin(10), (5.15)

corresponding to a 180o rotation, thus lifts to an element of order 4 in Spin(10). But the

product of two such, for example

(1, 1, 1,−1,−1) ∈ (SO(2))5 ⊂ Spin(10), (5.16)

5If the quadratic form preserved by SO(10) is written as
P

5

i=1
xiyi, then the five SO(2)’s operate on one

(xi, yi) pair at a time.
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lifts to an element α of order 2 in Spin(10). Its commutator in Spin(10) is

Spin(6) × Spin(4) = SU(4) × SU(2) × SU(2). (5.17)

We can now use an element

ω = (ω1, ω2, ω3) ∈ SU(4) × SU(2) × SU(2) (5.18)

of order 3 to break SU(4) × SU(2) × SU(2) to

SU(3) × U(1) × SU(2) × U(1). (5.19)

Explicitly, we could take

ω1 = diag(ξ, ξ, ξ, 1), ω2 = 1, ω3 = diag(ξ, ξ−1), (5.20)

with ξ a non-trivial cubic root of unity in C∗. Combining these two breaking effects, we

conclude that αω is an element of order 6 that breaks Spin(10) to SU(3)× SU(2)×U(1)×

U(1).

5.4 The construction of Standard Model bundles

We now turn to the essence of this section, which is our attempt at constructing Standard

Model bundles on the four X’s with π1(X) = Z6 constructed above. As usual, we construct

a stable bundle Ṽ on X̃ , which is invariant under the Z6 automorphism group 〈τ〉, so that

it descends to a bundle on X. As we have seen, to get realistic physics we require Ṽ to be

either an SU(4) or an SU(5) bundle.

The vector bundle V must satisfy the consistency and phenomenological constraints

described in section 2.2. For the bundle Ṽ , these translate into the conditions:

• (I): Ṽ must be 〈τ〉-invariant.

• (A): Ṽ must satisfy the anomaly cancellation condition which states that c2(X̃) −

c2(Ṽ ) must be an effective class around which M5-branes can wrap (in the weakly

coupled regime this must be zero).6

• (S): Ṽ must be polystable with respect to a Kähler class ω on X̃ ;

• (C1): c1(Ṽ ) = 0;

• (C3): c3(Ṽ ) = ±36.7

In the remaining of this section we will try in various ways to construct vector bundles

Ṽ with structure group SU(4) or SU(5) satisfying all of the above conditions.

6In this section we always consider the hidden bundle to be trivial, and we only allow for M5-branes in

the spectrum.
7This is because c3(Ṽ ) = 6c3(V ), since Ṽ is invariant under the free automorphism Z6 on X̃.
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5.5 Pure spectral construction

Perhaps the simplest construction is to use the fact that the simply connected Calabi-Yau

threefold X̃ is elliptically fibered to construct a stable bundle Ṽ on X̃ directly, using the

spectral cover construction of [20, 25], which we now review briefly.

The Fourier-Mukai transform defines an autoequivalence of the derived category of

coherent sheaves Db(X̃), which goes as follows.8 Let Ṽ → X̃ be a vector bundle of rank

r which is semi-stable and of degree zero on each fiber of π′ : X̃ → B. Then the Fourier-

Mukai transform FMX̃(Ṽ ) is a torsion sheaf on X̃ supported on a divisor e : Σ →֒ X̃ which

is finite and of degree r over B. Moreover, FMX̃(Ṽ ) has rank one on Σ; in fact, if Σ is

smooth, then FMX̃(Ṽ ) is simply the extension by zero of some line bundle L ∈ Pic(Σ).

Conversely, let e : Σ →֒ X̃ be a smooth divisor which is finite of degree r over the base

B of the elliptic fibration π′ : X̃ → B, and let N ∈ Pic(Σ) be a line bundle on Σ; the vector

bundle Ṽ is recovered as the Fourier-Mukai transform Ṽ = FMX̃(Σ, N). The bundle Ṽ

constructed in this way has rank r, is semistable and of degree 0 on each fiber of π′, and

has vertical first Chern class.

Any line bundle L ∈ Pic(X̃) has the form L = π′∗L ⊗ π∗L′, where L ∈ Pic(B) and

L′ ∈ Pic(B′). Denote by e : Σ →֒ X̃ the embedding of the divisor Σ, and let us first assume

that the line bundle N is given by e∗e
∗L for a global line bundle L ∈ Pic(X̃).

Now consistency condition (I) requires Ṽ to be invariant under the Z6 automorphism

group of X̃ generated by τ . Since Ṽ is manufactured through the spectral cover construc-

tion, we would like to translate the invariance condition into a condition on the Fourier-

Mukai transformed data (Σ, N). It was shown in [23] that Ṽ is 〈τ〉-invariant if the three

following conditions are respected (where τ∗
B denotes the pullback action on the bundles

— we use the notation of the previous sections for the automorphism):

αX̃(Σ) = Σ, τ∗
BL = L, TB′L′ = L′, (5.21)

where αX̃ is the linearization of the automorphism τ , which preserves the zero section σB :

B → X̃ , and TB′ is the spectral automorphism. By spectral automorphism we mean the

action of the automorphism τB′ on the Fourier-Mukai transformed data, which is given by

TB′ = FM−1

B′ ◦ τ∗
B′ ◦ FMB′ . (5.22)

The two first conditions in (5.21) are relatively easy to satisfy. However, the third

condition is subtler. In order to study this condition we need to understand the spectral

automorphism TB′ . In fact, we will not need the full spectral automorphism, but rather

its cohomological version tB′ which acts on cohomology classes rather than line bundles.

It is defined by

tB′ = fm−1

B′ ◦ τ∗
B′ ◦ fmB′ , (5.23)

where fmB′ is the Fourier-Mukai cohomological transform.

8Physically, the Fourier-Mukai transform can be interpreted as the action on the bundles of T -duality

along the elliptic fibers of X̃ .
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τ∗
B′ fmB′ fm−1

B′ tB′

1 1 −e0 + 1/2pt e0 + 1/2pt 1 + e0 − e1 + f − pt

pt pt f −f pt

f f −pt pt f

e0 e1 1 − 1/2f −1 − 1/2f e0

e1 e2 1 + e1 − e0 − 3/2f − pt −1 + e1 − e0 − 3/2f + pt e2 − e1 + e0 + f − pt

e2 e3 1 + e2 − e0 − 3/2f − pt −1 + e2 − e0 − 3/2f + pt e3 − e1 + e0 + f − pt

e3 e4 1 + e3 − e0 − 3/2f − pt −1 + e3 − e0 − 3/2f + pt e4 − e1 + e0 + f − pt

e4 e5 1 + e4 − e0 − 3/2f − pt −1 + e4 − e0 − 3/2f + pt e5 − e1 + e0 + f − pt

e5 e0 1 + e5 − e0 − 3/2f − pt −1 + e5 − e0 − 3/2f + pt 2e0 − e1 + 2f − 2pt

λ λ 6 + λ − 6e0 − 8f − 5pt −6 + λ − 6e0 − 8f + 5pt λ + 6e0 − 6e1 + 6f − 6pt

Table 1: The action of tB′ on cohomology.

In section 5.2 we studied the cohomology of the rational elliptic surface B′. We found

that the cohomological automorphism τ∗
B′ has a two-dimensional invariant subgroup, gen-

erated by the fiber class [f ] and the class

[λ] =

5
∑

i=0

[ei], (5.24)

where the ei’s are six disjoint sections, and e0 is the zero section. The cohomological

Fourier-Mukai transform fmB′ was studied in [22] (see table 2, p.32). It is straightforward

to show that their result is still valid in our case, where their e9 corresponds to the zero

section, which we denoted by e0. Combining this with the cohomological automorphism

τ∗
B′ we obtain the action of tB′ on cohomology which is shown in table 1.

Now the invariance condition TB′L′ = L′ implies the cohomological version tB′(ch(L′)) =

ch(L′), where ch(L′) = 1 + c1(L
′) + 1

2
c1(L

′)2 is the Chern character of the line bundle L′.

Let ℓ = c1(L
′). Then ℓ2 is a multiple of a point, so is tB′ invariant; so we need that 1 + ℓ

be tB′ invariant. Since [λ] − 6 is tB′ invariant by table 1, the condition is equivalent to

ℓ + 1

6
[λ] being tB′ invariant.

Now a class [x] is tB′ invariant if and only if fmB′(x) is τ∗
B′ invariant. We know

that over the rationals, the τ∗
B′ invariant classes (in the full 12-dimensional H∗(B)) are

spanned by:

1,pt, [f ], [λ]. (5.25)

It follows from table 1 that [x] = [ℓ] + 1

6
[λ] is tB′ invariant if and only if fmB′(x) is τ∗

B′

invariant, which is true if and only if fmB′(x) is in the rational span of

〈1,pt, [f ], [λ]〉. (5.26)

But using table 1 again, we see that this is true if and only if [x] = [ℓ] + 1

6
[λ] is in the

rational span of

〈[e0],pt, [f ], [λ] − 6〉. (5.27)
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In turn, this will true if and only if ℓ is in the affine subspace

−
1

6
[λ] + rational span of 〈[e0], [f ]〉. (5.28)

But this does not intersect Pic(B′) ⊂ Pic(B′)⊗Q, since 1

6
[λ] is not an integral class. In other

words, what we just showed is that there is no TB′-invariant line bundles L′ ∈ Pic(B′).

This implies that the vector bundle Ṽ cannot be 〈τ〉-invariant if N = e∗e
∗L for a global

line bundle L ∈ Pic(X̃). But as explained in [23], for a smooth and very ample divisor

Σ the Lefschetz hyperplane theorem says that every N ∈ Pic(Σ) comes from a global line

bundle L, and so we are forced to work with singular or not very ample spectral surfaces Σ.

Instead of doing so, we will follow the route paved in [22, 23] and build Ṽ as an extension

of two vector bundles V1 and V2, manufactured through the spectral construction.

5.6 Spectral construction and extensions

We define the vector bundle Ṽ by the short exact sequence

0 → V1 → Ṽ → V2 → 0, (5.29)

where the bundles Vi, i = 1, 2 are defined by

Vi = π′∗Wi ⊗ π∗Li; (5.30)

the Li are some line bundles on B′ and the Wi are bundles on B. We will take W1 to be

of rank 2, and W2 to be of rank r = 2 or 3, such that Ṽ has rank 4 or 5 respectively. In

the latter case, note that we do not lose generality by choosing W1 to be of rank 2 and W2

of rank 3, since inverting this choice only means considering the dual bundle.

The Wi are given by the Fourier-Mukai transforms Wi = FMB(Ci, Ni), where the

C1, C2 ⊂ B are smooth curves of degree 2 and r respectively over the base P1 of the elliptic

fibration β : B → P1, and the Ni ∈ Pic(Ci) are line bundles over Ci.

5.6.1 Invariance

The first consistency requirement (I) is that the bundle Ṽ must be invariant under the Z6

automorphism group generated by τ : X̃ → X̃ . For Ṽ to be invariant it is necessary that

V1 and V2 also be 〈τ〉-invariant. However, this is not sufficient; we must also ensure that

the space H1(X̃, V ∗
2
⊗V1) parameterizing extensions has a non-zero 〈τ〉-invariant subspace.

But for now let us focus on the invariance of V1 and V2.

By construction (5.30), we have that

τ∗(Vi) = π′∗τ∗
BWi ⊗ π∗τ∗

B′Li, (5.31)

for i = 1, 2. Thus it suffices to have a 〈τB〉-invariant Wi and a 〈τB′〉-invariant Li.

For the line bundles Li, we showed in section 5.2 that there is a two-dimensional

subspace of H2(B′, Z) which is 〈τB′〉-invariant, generated by the classes [f ′] and [λ′] —

recall that the invariant class [λ′] is given by the sum of the classes of six disjoint sections,

[λ′] =
5

∑

i=0

[e′i]. (5.32)
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Thus, if we choose the line bundles to be of the form

Li = O(ai[λ
′] + bi[f

′]), (5.33)

for some integers ai and bi, they will be 〈τB′〉-invariant as required. In fact, the [f ′] part

can be reabsorbed in the definition of the bundles Wi, and without loss of generality the

〈τB′〉-invariance of the line bundles implies that

Li = O(ai[λ
′]) (5.34)

for some integers ai.

To analyze the 〈τB〉-invariance of the higher rank bundles Wi we must work out the

action of the automorphism τB on the Fourier-Mukai transformed data, as in the previous

section. Define the spectral automorphism TB by

TB = FM−1

B ◦ τ∗
B ◦ FMB . (5.35)

From [23] we know that, for any curve C ⊂ B which is finite over P1, TB induces a

well-defined map TC : Pic(C) → Pic(αBC), where αB is the automorphism of B which

preserves the zero section as before. It was shown in [22, 23] that 〈τB〉-invariance of Wi

reduces to the two following conditions on the spectral data (Ci, Ni):

αB(Ci) = Ci, TCi
(Ni) = Ni. (5.36)

Solving these constraints is rather involved, and often requires long calculations in the

derived category, as in [22, 23]. In principle, one first needs to solve the combinatorial

problem of finding the right cohomology classes. Given classes that provide a solution

at the cohomological level, we still need to find within those classes appropriate invariant

curves Ci and invariant line bundles Ni ∈ Picdi(Ci) of a specified degree di. In the situation

explored in this paper we will see that there is a divisibility obstruction already to the initial

problem of finding the appropriate cohomology classes.

5.6.2 Digression: Effective curves

Before we move on, let us review a few facts about effective curves and their αB-invariance.

First, a divisor C ⊂ B is effective if and only if H0(B,O(C)) 6= 0. Let C be an effective

curve on B, and D be an irreducible effective curve on B. On the one hand, if D is not

a component of C; then the intersection number C · D ≥ 0, since they must intersect in a

certain number of points. On the other hand, if C ·D < 0, then D must be a component of

C; in other words, in this case the curve C is reducible and C − D must also be effective.

These simple observations will be useful in the following.

Let the curves Ci lie in the linear systems LSi. By definition, the linear systems LSi

must be effective. Moreover, for αB-invariant curves Ci to exist, a necessary condition is

that the linear systems LSi must be αB-invariant themselves. This condition is also suffi-

cient, since the linear systems are projective spaces and any automorphism of a projective

space must have fixed points. So αB-invariant curves Ci in LSi exist if and only if the

linear systems LSi are αB-invariant.
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In the case under study, the simplest αB-invariant linear systems that we can consider

are the following:

LS1 = |2e0 + k1f |, LS2 = |re0 + k2f |, r = 2, 3, k2, k3 ∈ Z. (5.37)

The coefficients of e0 must be 2 and r so that the curves Ci are 2-fold and r-fold covers of

the base P1, as required. Moreover, since LSi must be effective, we have ki ≥ 0. In fact,

we also assume that the curves Ci are smooth, which implies, using Bertini’s theorem, that

k1 ≥ 2 and k2 ≥ r [23].9

5.6.3 Chern classes

Let C1 ∈ |2e0 + k1f |, for k1 ≥ 2, C2 ∈ |re0 + k2f |, with r = 2, 3 and k2 ≥ r, and

Ni ∈ Picdi(Ci), where di is the degree of the line bundle. Also, let Li = O(ai[λ
′]).

It is straightforward to compute the Chern character of Ṽ from the results of [23].

Using the intersection numbers (5.12), we obtain

ch(Ṽ ) = (2 + r) + (2a1 + ra2)[π
∗λ′] +

(

d1 − 2k1 + 1 + d2 − rk2 +
1

2
r(r − 1)

)

[π∗f ′]

+ 6

(

−
(

a2

1 +
r

2
a2

2

)

+ a1(d1 − 2k1 + 1) + a2

(

d2 − rk2 +
1

2
r(r − 1)

))

[f × pt]

− (k1 + k2)[pt × f ′] − 6(a1k1 + a2k2)[pt]. (5.38)

5.6.4 Phenomenological constraints

We first use the phenomenological constraints (C1) and (C3), which give three equations,

to express the integers (a2, k2, d2) in terms of (a1, k1, d1). The constraint (C1) implies that

2a1 = −ra2, d1 − 2k1 + 1 + d2 − rk2 +
1

2
r(r − 1) = 0, (5.39)

while the constraint (C3) implies that

a1k1 + a2k2 = ∓3. (5.40)

Combining these three equations, we get

a2 = −
2a1

r
,

k2 =
r

2

(

±
3

a1

+ k1

)

,

d2 = −d1 + 2k1 − 1 +
r

2

(

rk1 − r + 1 ±
3r

a1

)

. (5.41)

9Perhaps we should be a little more precise here. Note that from Bertini’s theorem we know that for

every k1 ≥ 2, k2 ≥ r the generic curves in the linear systems LSi are smooth. However, given a k, it

is possible that all smooth curves in the linear system LS are not αB-invariant, and that the only αB-

invariant curves in LS are not smooth. An example of this situation was studied in detail in [23], where an

αB-invariant reducible curve which is not finite over the base was considered. But this will not bother us

in the following, as all the statements we will make are cohomological. Thus, it is sufficient for us that our

αB-invariant curve C can be deformed to a smooth curve (but not necessarily αB-invariant) in the same

linear system LS.
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Thus, in the following we only work with the integers (a1, k1, d1), understanding that

(a2, k2, d2) are fixed by (5.41) (up to the ± sign, which is fixed by the requirement that

k2 ≥ r).

Note that integrality of a2, k2 and d2 implies the integrality constraints

2a1

r
∈ Z,

r

2

(

±
3

a1

+ k1

)

∈ Z. (5.42)

5.6.5 Anomaly cancellation

The remaining consistency conditions provide inequalities on the integers (a1, k1, d1). Let

us first analyze the anomaly constraint (A).

Using the fact that

c2(X̃) = 12[f × pt] + 12[pt × f ′], (5.43)

we obtain that (A) requires the two inequalities

k1 + k2 ≤ 12,

−
(

a2

1 +
r

2
a2

2

)

+ a1(d1 − 2k1 + 1) + a2

(

d2 − rk2 +
1

2
r(r − 1)

)

≥ −2. (5.44)

Using the phenomenological constraints (5.41), these inequalities become

k1 ≤
2

2 + r

(

12 ∓
3r

2a1

)

,

d1 − 2k1 + 1 ≥ −
2r

a1(r + 2)
+ a1. (5.45)

5.6.6 Stability

We now study the stability condition (S). The slope µω(Ṽ ) of a vector bundle Ṽ on X̃

with respect to a Kähler class [ω] ∈ H2(X̃, Z) is given by

µω(Ṽ ) =
c1(Ṽ ) · [ω]2

rk(Ṽ )
. (5.46)

In particular, if c1(Ṽ ) = 0 then µω(Ṽ ) = 0 for any ω. As explained in section 2.2, a vector

bundle Ṽ is stable with respect to [ω] if for all sub-bundles W of Ṽ we have µω(W ) < µω(Ṽ ).

Recall from [25] that starting with any polarization [ω0] ∈ H2(X̃, Z), we can construct

a polarization [ω]

[ω] = [ω0] + m[π∗h′] (5.47)

for some fixed polarization [h′] ∈ H2(B′, Z) and m ≫ 0 such that every vector bundle Ṽ

on X̃ constructed from an irreducible spectral cover is stable with respect to [ω].

For the bundle Ṽ constructed as in (5.29), with the bundles Vi of the form (5.30), it

was shown in [23] that the bundle Ṽ is stable with respect to the polarization [ω] in (5.47)

if and only if the extension (5.29) is non-split, that is H1(X̃, V ∗
2
⊗V1) 6= 0, and µω(V1) < 0.
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In fact, following the arguments of Lemma 5.4 of [23], we can show that the first condition

on the extension space is equivalent to L1 · f
′ > L2 · f

′, that is, a1 > a2. Using (5.41), this

implies that

a1 > 0. (5.48)

The second condition, µω(V1) < 0, may be restated in a simpler form. We computed

above that

c1(V1) = 2a1[π
∗λ′] + (d1 − 2k1 + 1)[π∗f ′]. (5.49)

Following the arguments in section 5.2 of [23], the condition µω(V1) < 0 will be satisfied

provided that

(2a1[λ
′] + (d1 − 2k1 + 1)[f ′]) · [h′] < 0 (5.50)

for some ample class [h′] ∈ H2(B′, Z). Now, since the Kähler cone is dual to the Mori

cone it is clear that the existence of an ample class [h′] satisfying (5.50) is equivalent to

the statement that the class

[ν] = 2a1[λ
′] + (d1 − 2k1 + 1)[f ′] (5.51)

is not in the Mori cone of B′, that is, it is not effective.

How do we know when the class [ν] is effective or not? Recall that [λ′] is the sum of

the classes of six disjoint sections [e′i], i = 0, . . . , 5. Intersecting [ν] with the class of the

zero section [e′
0
], we get

[ν] · [e′0] = −2a1 + (d1 − 2k1 + 1). (5.52)

Assume that [ν] is effective. Let

d1 − 2k1 + 1 = −b < 0. (5.53)

Then,

[ν] · [e′0] = −b − 2a1 < 0 (5.54)

since a1 > 0, and so

[ν1] := [ν] − (b + 2a1)[e
′
0] (5.55)

must be effective. Intersect now [ν1] with [e′
1
]:

[ν1] · [e
′
1] = −(b + 2a1) < 0, (5.56)

since [e′
0
] · [e′

1
] = 0. Hence

[ν2] := [ν] − (b + 2a1)
(

[e′0] + [e′1]
)

(5.57)

must also be effective. Iterating with the other e′is up to e′
5
, we end up with the condition

that

[ν6] :=[ν] − (b + 2a1)[λ
′]

= − b[λ′] − b[f ′] (5.58)

– 27 –



J
H
E
P
0
8
(
2
0
0
8
)
0
6
0

must also be effective, which is clearly wrong, since b > 0. Therefore, we get that for

d1 − 2k1 ≤ −2, (5.59)

the class [ν] is not effective.

To summarize, consistency conditions of the compactification require the four following

inequalities on (a1, k1, d1).

Anomaly cancellation:

k1 ≤
2

2 + r

(

12 ∓
3r

2a1

)

,

d1 − 2k1 + 1 ≥ −
2r

a1(r + 2)
+ a1. (5.60)

Stability:

a1 > 0,

d1 − 2k1 ≤ −2. (5.61)

Moreover, we have by definition that k1 ≥ 2, and r = 2 or 3. We also have that k2 ≥ r,

which implies, through (5.41) that

k1 ≥ 2 ∓
3

a1

. (5.62)

There is also the integrality constraints:

2a1

r
∈ Z,

r

2

(

±
3

a1

+ k1

)

∈ Z. (5.63)

For r = 2, the first one is trivially satisfied for a1 ∈ Z, while the second one implies that

a1 must divide 3. For r = 3, the first constraint imposes that a1 be a multiple of 3, while

the second constraint imposes that a1 divide 9, and that 9

a1
+ 3k1 be even.

5.6.7 Solutions?

To study the inequalities, we proceed as follows. We consider r = 2 and 3 independently.

For each of these, we first use the integrality constraints (5.63) and the first stability

condition (5.61) to find the allowed values for a1. Then, we use the second stability con-

dition (5.61) and the second anomaly condition (5.60) to find allowed values of d1 and k1:

−
2r

a1(r + 2)
+ a1 ≤ d1 − 2k1 + 1 ≤ −1. (5.64)

This inequality is very interesting, since it shows explicitly the clear tension between the

anomaly cancellation condition and the stability condition. It turns out to be impossible

to find d1’s and k1’s satisfying these two inequalities.
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• r = 2. The allowed values of a1 are 1 or 3. However, inequality (5.64) is never satisfied,

since the l.h.s. is strictly greater than the r.h.s. . Indeed, for r = 2, the l.h.s. is

−
1

a1

+ a1, (5.65)

which is for both a1 = 1 and 3 strictly greater than the r.h.s. , −1. Therefore, there

are no solutions to the stability and anomaly cancellation constraints for r = 2, and we

cannot construct globally consistent SU(4) bundles.

Notice however the strong tension between anomaly cancellation and stability. If we

drop the anomaly cancellation condition, arguing as in section 4, the left inequality

of (5.64) disappears, and we get an infinite family of solutions, as in the Z2 construction.

However, in contrast with the Z2 construction, here there is no unique solution satisfying

both global consistency conditions at the same time.

• r = 3. Here, a1 = 3 or 9. But again (5.64) is never satisfied, since the l.h.s.

−
6

5a1

+ a1 (5.66)

is strictly greater than −1 for both a1 = 3 and 9. So we cannot construct globally consis-

tent SU(5) bundles either. Notice again however that if we drop anomaly cancellation,

we get an infinite family of phenomenologically consistent vacua.

5.7 Conclusions

Let us conclude this section with a few comments. We tried to solve the numerical con-

straints coming from anomaly cancellation, stability of the vector bundle, and the phe-

nomenological requirements. We found no solutions. However, we obtained a result similar

to what we discussed in the previous section. Namely, if we drop the topological anomaly

condition, for instance by allowing anti-branes, or by focusing locally on the visible brane,

we get plenty of models, infinite families of models in fact, phenomelogically viable at

the topological level. But if we consider globally consistent compactifications, either per-

turbative or at strong coupling with M5-branes, we get no solutions. In other words,

none of these local models can be UV completed into globally consistent supersymmetric

string vacua.

However, there are various ways to generalize the bundle construction of the previous

section to try to get Standard Models on these Z6 threefolds. One possibility would be to

consider spectral curves Ci lying in linear systems LSi larger than |2e0+k1f | and |re0+k2f |.

For instance, we could consider linear systems LSi given by LSi = |rie0 +kif +
∑

n ai,nµn|,

where the µn are some αB-invariant classes. We tried in various ways to construct bundles

using these extended linear systems, without success. We also tried to consider reducible

curves Ci, but ran into problems.

This is not to say that we are ready to rule out the construction of Standard Model

on these Z6 threefolds. Rather, we state that the type of construction that has been used

in the models of [22, 23, 8] does not seem to yield viable bundles in this case; and we

– 29 –



J
H
E
P
0
8
(
2
0
0
8
)
0
6
0

have not suceeded yet in generalizing it to produce suitable bundles. It would of course be

more satisfactory to produce a systematic study of the moduli space of bundles on these

threefolds, in order to prove the existence or non-existence of Standard Model bundles on

these manifolds.

It would also be desirable to study the construction of bundles on the other non-simply

connected Calabi-Yau threefolds in the classification of [9]; perhaps some of these threefolds

will yield realistic vacua. Indeed, while only the threefolds with Z6 and Z3×Z3 fundamental

groups can be used to break the Spin(10) gauge group to the MSSM gauge group with an

extra U(1)B−L, all the threefolds can be used to break SU(5) to the MSSM gauge group.

It is conceivable that Standard Model bundles similar to the one constructed in [8] exist

on other threefolds.

A. Computation of the invariant cohomology group H2(B, Z)〈τB 〉

In this appendix, we compute the invariant cohomology group H2(B, Z)〈τB〉 for the four

families of rational elliptic surfaces that are used to construct the four non-simply connected

Calabi-Yau threefolds X with fundamental group π1(X) = Z6. These invariant classes were

needed in section 5.2. We first outline a general procedure for computing the invariant

cohomology group for any rational elliptic surface with a finite group of automorphisms

classified in [9]. We then apply our procedure to the four cases under consideration.

A.1 Outline of the procedure

Let us recall the details of the geometry. We are given a non-generic rational elliptic surface

B, with an automorphism τB : B → B of order n (take any case in tables 6, 8 and 9 of [9]).

The automorphism τB has the form

τB = tξ ◦ αB , (A.1)

where αB : B → B is the linearization of τB which fixes the zero section σ : P1 → B of the

elliptic fibration of B, and tξ denotes translation by a section ξ in the Mordell-Weil group

MW (B). We denote the order of αB by m, with m|n.

Let τP1 : P1 → P1 be the automorphism induced by τB . When it is non-trivial, denote

by 0,∞ ∈ P1 its two fixed points. By construction, we know that αB fixes the fiber over

∞, which we denote by f∞, pointwise, and has isolated fixed points in f0.

Using the notation of [9], we define the group homomorphism Pi : MW (B) → MW (B):

Pi : ξ → Pi(ξ) :=

i−1
∑

j=0

αj
Bξ. (A.2)

For τB to be of order n, the section ξ must satisfy

Pn(ξ) = σ, (A.3)

that is, it must be in the kernel of Pn. We must also require that the section ξ intersects

f∞ at a torsion point of order precisely n, for 〈τB〉 to act freely on f∞.
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Not all choices of ξ’s however lead to inequivalent automorphisms. In particular, we

proved in [9] that all sections in a given coset of Im(1 − αB) in ker(Pn) lead to conjugate

automorphisms. This means that we do not have to consider all ξ’s in ker(Pn), but can

restrict ourselves to nice representatives of the cosets. Moreover, we showed that all sections

in a given coset intersect f∞ at the same torsion point (or 0). Hence we may only consider

representatives of the cosets intersecting f∞ at a torsion point of order precisely n.

We want to compute the induced automorphism τ∗
B on the cohomology group H2(B, Z),

and its invariant subgroup. Define the subgroup T ⊂ H2(B, Z) generated by the fiber class

[f ], the class of the zero section [σ], and the classes of the non-neutral components of the

singular fibers of B. There is a well known short exact sequence

0 → T → H2(B, Z) → MW (B) → 0, (A.4)

which tells us that H2(B, Z) is generated by the fiber class, the class of σ, the classes of

the non-neutral components of the singular fibers, and the classes of sections generating

MW (B).

The action of τ∗
B on the classes generating T is straightforward to compute. We know

that αB fixes [f ] and [σ], and its action on the singular fibers follows from the geometry of

B. Then, τ∗
B fixes [f ], sends [σ] to [ξ], and we can compute its action on the classes of the

non-neutral components using the intersection numbers of ξ.

What remains to be done is the computation of τ∗
B on the classes of sections generating

MW (B). The action of translation by a section ξ is clear; what we need to compute is

the action of αB , when it is non-trivial. Since αB fixes the zero section, it defines an

automorphism of the Mordell-Weil group MW (B), which projects onto an automorphism

of the Mordell-Weil lattice MWlat(B). Moreover, in all cases in tables 6, 8 and 9 of [9],

we know that αB fixes the torsion subgroup of the Mordell-Weil group. We also know the

fixed locus of αB on B; it fixes the smooth elliptic fiber f∞ pointwise, and has a certain

number of isolated fixed points on f0. We can then use the Lefschetz fixed-point theorem

to compute the trace of αB on H2(B, Q); using the explicit action on T , we extract the

trace of αB on the Mordell-Weil lattice MWlat(B).

From this information we would like to write down an explicit matrix for αB on a

given basis of MWlat(B). Let Aut(MWlat) be the automorphism group of the Mordell-

Weil lattice. Generally, it will be given by the extension of the Weyl group W (MWlat) by

the outer automorphisms of the Dynkin diagram. Conjugacy classes in Weyl groups have

been classified; see for instance [16, 19]. Moreover, automorphisms of Dynkin diagrams are

relatively simple. Hence, using what we know about αB , namely its order, its trace and its

invariant sublattice, we should be able to identify in which conjugacy class in Aut(MWlat)

it lies. We can then write down an explicit matrix representative in this class.

Using this explicit representative for αB, we can write down the map from ker(Pn) to

the quotient group

ker(Pn)

Im(1 − αB)
. (A.5)
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We determine which cosets intersect f∞ at a torsion point of order n. Using representatives

for these cosets, we can work out in detail the invariant cohomology H2(B, Z)〈τB〉 for all

possible choices of suitable ξ’s.

A.2 The Z6 cases

Let us now exemplify this procedure for the four cases with order 6 automorphisms τB ,

corresponding to case 3 of table 6 of [9], and cases 13, 14 and 15 of table 8.

Recall that in these four cases, we know that

dimH2(B, Z)〈τB〉 = 2. (A.6)

We also constructed two invariant classes of H2(B, Z):

[f ], [λ] =
5

∑

i=0

[ei], (A.7)

where the sections ei form the τB-orbit of the zero section σ := e0. We know the intersection

numbers

[f ] · [f ] = 0, [f ] · [λ] = 6. (A.8)

We need to compute the self-intersection of [λ], and determine whether [f ] and [λ] generate

the full invariant cohomology, or only a finite index subgroup thereof.

A.2.1 First family

We start with case 3 of table 6. B is a rational elliptic surface with configuration of

singular fibers {I6, I3, I2, I1}. The Mordell-Weil group MW (B) has rank 0, and is given

by MW (B) = Z6. In other words, the only sections are the zero section σ, and a torsion

section η of order 6, with its multiples.

For this family, the order 6 automorphism τB : B → B is simply given by translation

by the order 6 torsion section η; that is, the linearization αB of τB is the identity, as is the

projection of τB to P1. Consequently, the invariant class [λ] reads

[λ] = [σ] + [η] + [2η] + [3η] + [4η] + [5η]. (A.9)

Since torsion sections are necessarily disjoint from the zero section, and disjoint from each

other, we obtain directly the intersection number

[λ] · [λ] = −6. (A.10)

Now we need to figure out whether [f ] and [λ] generate the full H2(B, Z)〈τB〉. In other

words, we must determine whether there exists a class

[ρ] = a[λ] + b[f ], (A.11)

with a, b ∈ Z relatively prime, which is divisible.
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Suppose that
1

m
[ρ] (A.12)

is integral for some integer m ∈ Z. Intersect with the class of the zero section [σ]. One

gets that
b − a

m
∈ Z, (A.13)

which implies that

[ρ′] =
a

m
([f ] + [λ]) (A.14)

must also be integral. Squaring it we get that

6
a2

m2
∈ Z, (A.15)

which implies that m must divide a, which in turn implies that m must also divide b

by (A.13), hence a contradiction. Therefore we get that [ρ] is never divisible, and [f ] and

[λ] generate the full invariant cohomology group H2(B, Z)〈τB〉.

Note that this last result does not depend on the particular geometry of the rational

elliptic surface, but only on the fact that the class [λ] satisfies [λ] · [λ] = −6. Hence for the

other families, we will only need to show that [λ] · [λ] = −6.

A.2.2 Second family

We consider case 15 in table 8. The configuration of singular fibers is {IV, 2I3, 2I1}, and

the Mordell-Weil group is MW (B) = A∗
2
⊕ Z3. The order 6 automorphism has the form

τB = tξ ◦αB , where the linearization αB has order 2, and the section ξ ∈ MW (B) satisfies

αBξ + ξ = η, (A.16)

where η is a 3-torsion section. That is, η ∈ ker(P6), and intersects f∞ at a torsion point

of order 6. For this family, ker(P6) = MW .

The invariant class [λ] reads

[λ] = [σ] + [ξ] + [η] + [ξ + η] + [2η] + [ξ + 2η]. (A.17)

αB has 4 isolated fixed points on the singular fiber of type IV over 0 ∈ P1, and fixes the

smooth fiber over ∞ ∈ P1 pointwise.

We know that αB fixes the torsion sections, and its action on MW (B) projects onto an

automorphism of order 2 of the lattice A∗
2
. Using Lefschetz fixed-point theorem we get that

the trace of αB on A∗
2

is −2. We also know that it has no invariant sublattice. Since A∗
2

is equivalent to A2 (up to scaling), its automorphism group Aut(A∗
2
) is equal to Aut(A2).

It is given by the extension of the Weyl group W (A2) by the automorphism group of the

Dynkin diagram, which is just the order 2 group generated by negation of all coordinates

in A∗
2
; let us denote this element by −1. Using the classification of conjugacy classes in

Weyl groups, we get that αB is in the conjugacy class containing the element −1, which has

trace −2 and no invariant sublattice. Hence we can take αB to act as −1 on the lattice A∗
2
.
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Using this description of αB we compute the quotient group

MW

Im(1 − αB)
≃ (Z2)

2 × Z3, (A.18)

which has cardinality 12. We also compute explicitly the map MW → (Z2)
2×Z3, and show

that each non-trivial coset contains at least one representative which is disjoint from the

zero section (either a torsion section, or a section which projects to a minimal point of the

lattice A∗
2
, which means, as was shown in [30, 32], that it is disjoint from σ). This implies

that the map from the quotient group (Z2)
2 × Z3 to the torsion points of f∞ is injective,

and we know exactly which cosets intersect f∞ at torsion points of order precisely 6.

Each of these suitable cosets contains a representative which projects to a minimal

point of A∗
2
; we define ξ to be such a section. Using the height pairing in the lattice, it is

easy to show that ξ must also be disjoint from the torsion sections η and η + η, which are

also disjoint from the zero section. We end up with the intersection number

[λ] · [λ] = −6, (A.19)

for all suitable ξ’s, as for the first family.

A.2.3 Third family

We consider case 14 in table 8. The configuration of singular fibers is {III, 3I2, 3I1}, and

the Mordell-Weil group is MW (B) = D∗
4
⊕ Z2. The order 6 automorphism has the form

τB = tξ ◦αB , where the linearization αB has order 3, and the section ξ ∈ MW (B) satisfies

P3(ξ) = η, (A.20)

where η is a 2-torsion section. Here again, ker(P6) = MW . The invariant class [λ] reads

[λ] = [σ] + [ξ] + [P2(ξ)] + [η] + [η + ξ] + [η + P2(ξ)]. (A.21)

αB has 3 isolated fixed points on the singular fiber of type III over 0 ∈ P1, and fixes the

smooth fiber over ∞ ∈ P1 pointwise.

We know that αB fixes the torsion sections, and its action on MW (B) projects onto

an automorphism of order 3 of the lattice D∗
4
. Using Lefschetz fixed-point theorem we get

that the trace of αB on D∗
4

is −2. We also know that it has no invariant sublattice. Since

D∗
4

is equivalent to D4 (up to scaling), Aut(D∗
4
) = Aut(D4). The latter is given by the

extension of the Weyl group W (D4) by the outer automorphisms of the Dynkin diagram,

which in this case is the symmetric group S3 of order 6 (D4 exhibits so-called triality). In

fact, Aut(D4) can be identified with the Weyl group W (F4) of the exceptional group F4.

Conjugacy classes in W (F4) are listed in table 8, p.48 of [16]. There is only one class

containing an element of order 3 with trace −2 and no invariant sublattice. It is indexed

by the Carter graph

A2 × Ã2, (A.22)

which means that a representative is given by the product of an element expressible as a

product of reflections corresponding to long roots, and an element expressible as a product
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of reflections corresponding to short roots. Details aside, the point is that there is only

one conjugacy class in Aut(D4) with the required properties, and we can write an explicit

matrix representative for αB. It is in fact obtained by composing an element of W (D4)

with an outer automorphism.

Using this description of αB we compute the quotient group

MW

Im(1 − αB)
≃ (Z3)

2 × Z2, (A.23)

which has cardinality 18. We also compute explicitly the map MW → (Z3)
2 × Z2, and

show that each non-trivial coset contains at least one representative which is disjoint from

the zero section. This implies that the map from the quotient group (Z3)
2 × Z2 to the

torsion points of f∞ is injective, and we know exactly which cosets intersect f∞ at torsion

points of order precisely 6.

Again, all suitable cosets contains at least one representative which projects to a min-

imal point of D∗
4
, hence is disjoint from σ. We define ξ to be such a section. Using the

explicit matrix for αB , it is easy to show that P2(ξ) = αBξ + ξ also projects to a minimal

point, thus is disjoint from σ.10 Both sections are also disjoint from the torsion section η,

and we obtain again that

[λ] · [λ] = −6, (A.24)

for all suitable ξ’s.

A.2.4 Fourth family

We consider case 13 in table 8. The configuration of singular fibers is {12I1}, and the

Mordell-Weil group is MW (B) = E8. The order 6 automorphism has the form τB = tξ◦αB ,

where the linearization αB has order 6, and the section ξ ∈ MW (B) satisfies

P6(ξ) = σ. (A.25)

Again, ker(P6) = MW . The invariant class [λ] reads

[λ] =

5
∑

i=0

[Pi(ξ)]. (A.26)

αB has one fixed point on the smooth fiber over 0 ∈ P1, and fixes the smooth fiber over

∞ ∈ P1 pointwise.

αB is an automorphism of order 6 of the lattice E8 with no invariant sublattice. Using

Lefschetz fixed-point theorem we get that the trace of αB on E8 is −3. The automorphism

group of E8 is just the Weyl group W (E8). Looking at conjugacy classes in W (E8) (table

10This can also be obtained as follows. If [ξ] · [σ] = 0, by Z6-symmetry this implies that [ξ] · [P2(ξ)] = 0

and [P2(ξ)] · [η] = 0. Moreover, using the height pairing, one can see that the condition [ξ] · [σ] = 0 implies

that ξ must intersect two non-neutral components of the singular fibers. Considering the action of αB on

these components, we compute that P2(ξ) also intersects two non-neutral components. Finally, pairing

P2(ξ) with the torsion section η and using the fact that the torsion section η is disjoint from σ, we obtain

that P2(ξ) must also be disjoint from the zero section.
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11, pp.54-58 of [16]), we see that there is only one conjugacy class with element of order 6,

trace -3 and no invariant sublattice; it has Carter graph

A1 × A2 × A5. (A.27)

A representative is given by the product of Coxeter elements of W (A1)×W (A2)×W (A5).

Hence we can use this representative for our αB . We can write it in matrix form as follows.

First, we use the embedding of A1 ⊕ A2 ⊕ A5 in E8, which is a subgroup of index 6, given

by removing the central node of the extended Dynkin diagram of E8, to write down αB

as an 8 × 8 matrix in the basis of A1 ⊕ A2 ⊕ A5. We then conjugate it with the change of

basis to get a matrix form for αB in the standard basis of E8.

Using this description, we compute the quotient group

MW

Im(1 − αB)
≃ (Z6)

2, (A.28)

which has cardinality 36. We write down the map E8 → (Z6)
2, and show that each coset

contains a representative disjoint from σ. Hence the map from the quotient group (Z6)
2

to the torsion points of f∞ is injective, and we know which cosects intersect f∞ at torsion

points of order 6.

Again, each of these suitable cosets contains at least one representative which is a

minimal point of E8, hence a section disjoint from σ. Define ξ to be such a section. One

can then check explicitly that the sections Pi(ξ), i = 2, . . . , 5 are also of minimal length,

hence disjoint from σ. We thus obtain again that

[λ] · [λ] = −6, (A.29)

for all suitable ξ’s.

To conclude, we have showed that for all four families, and for all suitable automor-

phisms τB, the invariant cohomology group H2(B, Z)〈τB〉 is always generated by two classes

[f ] and [λ], with intersection numbers

[f ] · [f ] = 0, [f ] · [λ] = 6, [λ] · [λ] = −6. (A.30)
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